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ABSTRACT
In this paper we analyze the different perfor-

mances of iterative algorithms for a capacitance
tomography problem. In particular, the Gauss-
Newton scheme using the approximate Hessian is
compared with the nonlinear conjugate gradients
method. Several aspects like convergence rate,
computational cost, amount of the remaining solu-
tion norm and image quality have to be taken into
account. The image reconstructions are based on
real measurement data provided the developed pro-
totype sensor developed at our department.

INTRODUCTION
The reconstruction of the material distribution

inside a closed pipe is often required for control-
ling industrial processes. A detailed description of
the method, i. e. calculation of the forward prob-
lem and the Jacobian is given in [1]. Due to the
illposedness of the problem a regularization term
has to be introduced. A novel method to adapt this
regularization term iteratively is introduced. In or-
der to fulfill the requirements of real-time needs
and high image qualities the choice of the recon-
struction algorithm plays an important role for the
reconstruction task.

For electrical capacitance tomography we
search for the relative permittivity distribution εr

inside a closed object, like for instance, a pipe
by measuring the resulting electrical potentials at
floating electrodes surrounding the pipe. Other
electrodes at the pipe’s surface serve as active elec-
trodes, i. e. electrodes on which a known potential
is prescribed (fig. 1).

For the forward problem solution (determina-
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Figure 1: The permittivity distribution inside a
closed object (pipe) is reconstructed by means of
voltage measurements at electrodes outside the ob-
ject.

tion of the potentials at floating electrodes from
a given permittivity distribution and a given set
of active electrodes (with a prescribed potential))
the governing equations to be solved are Gauss’
and Faraday’s law for the static case leading to
a Poisson equation in the interior of the pipe:
∇ (ε (∇V )) = 0, where ε is the spatial depen-
dent electric permittivity (ε = ε0εr, where ε0 is
the permittivity of air and εr is the dimensionless
relative permittivity) and V is the electric scalar
potential. Dirichlet boundary conditions apply at
the position of the electrodes, while homogeneous
Neumann boundary conditions apply elsewhere on
the boundary. The forward problem is solved by
means of a finite element approach. Thus, the do-
main of interest is discretized by linear triangu-
lar finite elements with constant permittivity val-
ues. The number of finite elements inside the pipe
equals the number of degrees of freedom of the in-
verse problem.

For the inverse problem the permittivities of fi-
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nite elements inside the pipe are varied until the
difference of the output voltage of the finite ele-
ment model and the measured voltages is minimal.

For obtaining a reasonable solution for a reg-
ularized reconstruction problem, it is necessary to
find a good choice for the regularization parame-
ter. In our case we use a discrete Laplace operator
for the regularization matrix in order to incorporate
some smoothness assumption on the solution.

The inverse problem can be formulated as fol-
lows:

ε∗r = arg min
εr

{

‖Vm − V0‖
2

2
+ α ‖Lεr‖

2

2

}

, (1)

where ε∗r is the solution vector in the optimal point,
V0 is a vector of measured potentials, L is the reg-
ularization matrix and α is a regularization param-
eter.

EXPERIMENTAL SETUP
In fig. 2, a block diagram of the experimen-

tal setup is shown. The sensor head consists of
16 electrodes that are arranged on the outer face of
a non-conducting pipe. The shielding of the elec-
trodes is not shown in figure 1 for reasons of clarity.
Each electrode can be used as a transmitting elec-
trode (excited by a 10.7 MHz rectangular signal) or
as a receiving electrode (measuring the mean elec-
tric scalar potential of the electrode).
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Figure 2: Measurement setup used for ECT mea-
surements: A ring of 16 measurement electrodes
is arranged around the tube; the switching circuitry
is used to change the operating mode of each elec-
trode (transmit or receive); all needed control sig-
nals are provided by the dSPACE system that is
connected to a personal computer via local area
network.

To simplify the development of the circuitry,
the necessary analog/digital conversion is per-

formed by a dSPACE data acquisition system af-
ter a pre-amplification step in the sensor front-
end. The dSPACE system is a standalone data
acquisition and control system, consisting of sev-
eral modules and controlled by a PowerPC PPC750
CPU. For the task of analog/digital conversion,
a dSPACE DS2003 multi-channel A/D converter
module is used. This module is operated at a sam-
pling rate of 10 kHz. An additional module, the
dSPACE DS4001 timer board, is utilized to gen-
erate the control signals for the electronic circuitry.
The whole system is programmed using MATLAB/
Simulink running on a Personal Computer con-
nected to the dSPACE system via Local Area Net-
work. To increase data acquisition speed, the core
routines are programmed in C and compiled to run
on the PPC750 CPU of the dSPACE system.

To overcome the problem of static charge and to
decrease the sensitivity to external noise sources, a
carrier frequency principle is adopted for the elec-
tronic circuitry design. The transmitting electrodes
are excited by a 10.7 MHz rectangular signal of se-
lectable polarity. This waveform is chosen since
the generation of a rectangular signal with defined
amplitude can be easily achieved. In the receiv-
ing circuitry, a small-bandwidth ceramic filter is
used to extract only the fundamental wave. The
main printed circuit board (PCB), containing the
signal generation circuitry, the second signal am-
plification stage and the rectifier circuit, is shaped
as two halves of an annulus, and arranged around
the pipe to be examined. The first-stage amplifiers
are located on 16 small printed circuit boards (one
for each electrode) that are plugged onto the main
board

THEORETICAL BACKGROUND
For reconstruction problems, where the model

states may vary in a wide range, like for Capaci-
tance Tomography, where permittivity values to be
reconstructed may be the ones of water (εr=80),
oil (εr=2-3) or air (εr=1), the value for the recon-
struction parameter is depending on the materials
involved (a reconstruction parameter that works for
oil and air gives very wrong results for water and
oil). Hence an adaptive way of choosing the regu-
larization parameter has to be found.

A method of adapting the regularization param-
eter was found by our group [5]. For iteration t the
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Figure 3: Sensor electronics with tristate amplifiers
to switch electrodes between transmitting and re-
ceiving state. The circuitry board is split in two
half-planes for easier assembly.

regularization parameter is given by

αt = K
‖Vm − V0‖

2

2

‖Lεr‖
2

2

, (2)

where εr is the relative permittivity, which is
searched for and K is a constant that has to be
found for several test distributions (in our case
K = 10−3). It is obvious from (2) that the reg-
ularization parameter decreases during iterations,
since the solution norm ‖Vm − V0‖

2

2
decreases,

and hence less emphasis is put on the regulariza-
tion term, bearing the possibility that sharp edges
can be reconstructed as well.

The solution of (1) can be found, in principle,
with any optimization technique. The most com-
mon approach, however, since (1) is from its na-
ture a least squares problem, is a Gauss-Newton
scheme, with the principal drawback of large mem-
ory requirement for the storage of the approxi-
mated Hessian matrix.

A nonlinear conjugate gradient method, on the
other hand, does not need the Hessian matrix at all,
and hence, at the first sight may be suited better to
capacitance tomography problems, where one has
to deal with 200 to several thousands of unknowns.

In the following these two methods will be
compared on the basis of tests that have been
carried out with the capacitance tomography sen-

sor currently in use in our group, consisting of
16 equally distributed electrodes, which can be
switched between active and floating states.

ITERATIVE METHODS
The nonlinear conjugate gradients algorithm

(NCG) is considered to be one of the most efficient
minimization algorithms [2]. In contrast to the
quasi-Newton-type methods ( [3], [4]) which have
quadratically increasing memory requirements and
computational complexity with the number of pa-
rameters n. For large problems, i. e. a large num-
ber of degrees of freedom, it often does not pay
off to approximate the Hessian. Conjugate gradi-
ent methods avoid a direct approximation of the
Hessian and therefore are linear in their memory
requirements and computational complexity with
respect to n. However, in general the search
directions will be worse and conjugate gradient
methods demand more iterations for convergence
than quasi-Newton-type methods. Nevertheless the
overall computation time is smaller for large prob-
lems, since each iteration suffers from lower com-
putational cost. For our specific reconstruction
problem a nonlinear conjugate gradient algorithm
is applied which adapts the formulas of the linear
CG. To transform the linear CG into the NCG the
step size has to be adjusted and the so-called di-
rection calibration parameter β has to be taken into
account. To calculate this parameter the Fletcher-
Reeves formula was adopted, [7].

βi =
||∇f(xi)||

2
2

||∇f(xi−1)||22
(3)

where x denotes the nonlinear inverse solution vec-
tor and f(x) is the nonlinear error residual. The
scalar factor β represents the knowledge carried
over from the previous iterations. Thus, the CG
method can be seen as a compromise between
steepest descent, where no information about pre-
vious iterations is exploited, and the quasi-Newton-
type methods, where the information about the ap-
proximation of the second order derivatives (ap-
proximated Hessian) is utilized.

Although the NCG is applicable for recon-
structing high contrast permittivity distributions
one has to accept the adversarial properties of the
algorithm in terms of convergence behavior. In fact
convergence problems are occurring if the function
to be minimized has many local minima. The con-
vergence properties of CG algorithms and CG re-
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lated algorithms are well discussed in several pub-
lications, [9], [8].

The Gauss-Newton method is a modification of
the general Newton method. The objective func-
tion is minimized in a least squares sense. The im-
portant feature of this algorithm is that it is possible
to calculate the gradient exactly and to approximate
the second order derivative matrix with a rather
high accuracy. However, the algorithm improves
the accuracy of the approximated Hessian succes-
sive in each iteration starting with a very bad esti-
mation of the Hessian. The obtained convergence
is much more faster than using quasi-Newton-type
methods. Since the Gauss-Newton method can suf-
fer from the same problems like any other second
derivative method, a line search approach is advis-
able. However, no matter how the search direction
is evaluated, problems occur if the system matrix is
ill-conditioned or even singular. The larger the ra-
tio of the largest and smallest singular values of the
system matrix is, the slower is the rate of conver-
gence of the algorithm. Due to this common prob-
lem, especially in solving inverse problems, regu-
larization has to be introduced. For analyzing the
performance of different algorithms the NCG and
a Gauss-Newton (GN) based scheme using an ap-
proximation of the second derivative matrix are ap-
plied to solve the inverse regularized problem. For
both methods a line search based on quadratic in-
terpolation is applied. Additionally, an active set
strategy to restrict the permittivity values to rea-
sonable values is implemented.

The gradient of (1) required for both methods
is given by

gt = 2JT
t (Vm,t − V0) + 2αLT Lεr,t, (4)

where J is the Jacobian matrix, whose entry in the
ith row and jth column equals

Ji,j =
∂V i

m

∂ε
j
r

. (5)

The Jacobian matrix can be calculated most effi-
ciently by means of the adjoint variable method [6].

The update for the relative permittivity vector
for iteration t + 1 is given by

εr,t+1 = εr,t + γt

gT
t gt

gT
t−1gt−1

εr,t − gt (6)

according to Fletcher and Reeves [7] for the NCG

and

εr,t+1 = εr,t − γt

(

JT
t Jt + αtL

T L
)

−1

(

JT
t (Vm,t − V0) + αtL

T Lεr,t

)

(7)
for the Gauss-Newton method.

In (7) and (6) γt is the stepsize at iteration t,
which results from a quadratic interpolation based
line search.

RECONSTRUCTION RESULTS
For testing the two iterative reconstruction al-

gorithms a test distribution was chosen. In particu-
lar, a PVC bar (εr = 2 − 4) was positioned in the
center of an air-filled tube (εr = 1) (fig. 4). Fig. 5
and fig. 6 illustrate the reconstructed test distribu-
tion for both GN and NCG method. The behavior
of the solution norm and the progression of the reg-
ularization parameter is faced in fig. 7 and fig. 8.

Figure 4: Dielectric cylindrical rod placed near the
center of the tube. The electronics for the 16 elec-
trodes can be seen as well.

DISCUSSION
The comparison of fig. 5 and fig. 6 indicate that

the Gauss-Newton method performs better than the
conjugate gradient method what reconstruction ac-
curacy is concerned. An explanation for this can
be found when looking at fig. 7. The solution norm
obtained with the conjugate gradient method does
not decline to the value for this norm obtained with
the Gauss-Newton method (even for 150 iterations)
indicating that the NCG got stuck in some subopti-
mal minimum.

The progression of the regularization parame-
ter (which has been calculated with (2)) shows de-
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Figure 5: Reconstructed distributions with adapted
regularization parameter using Gauss-Newton
method. The GN scheme needs about 20 iterations
for a reasonable result.
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Figure 6: Reconstructed distributions with adapted
regularization parameter using conjugate gradient
method. The NCG takes about 140 iterations.

creasing behaviour over the iterations, which is im-
mediately clear from (2), since the solution norm
decreases as well. Due to the fact that the value
of the solution norm is higher in case of the con-
jugate gradient method, the same must hold for
the regularization parameter. The higher values
for the regularization parameter reflect in fig. 6,
where the permittivity distribution is much more
homogeneous than for the Gauss-Newton recon-
struction result (note that the discrete Laplacian
operator based regularization term penalizes non-
smooth material distributions).
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Figure 8: Progression of the regularization param-
eter α over iterations of reconstruction for GN and
NCG method. The difference in the magnitude of
the adapted parameter is significantly.

CONCLUDING REMARKS
An analysis of the performance of the two de-

scribed iterative algorithms for our image recon-
struction problem based on real measurement data
was given. Even though for the NCG less matrix
vector operations have to be performed, and hence
this method needs less computation time for one it-
eration than the Gauss-Newton method, NCG can
not compete with the Gauss-Newton method, what
accuracy and number of iterations is concerned.
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Figure 9: Remaining error between the measured
potential vector and the computed potential vector.
The fitting between measurement model and math-
ematical model can be improved using the Gauss-
Newton scheme instead of nonlinear conjugate gra-
dient method.
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